JSS 8-Week Syllabus

Week 1	Topics Intro to JSS Design Process Vehicle Design	Activities/Tasks View introductory JSS slideshow/video Discuss hands-on design and design process Discuss vehicle design and components Brainstorm car concepts in small groups 	Resources (link to these) • Introductory JSS slideshow/video • The Design Process • Basics of Model Solar Car Design lesson • Building a Basic Junior Solar Sprint Car PowerPoint
2	Applied STEM Concepts • Experiment with STEM principles relevant to wheels, axles, bearings, and chassis	 Class experiments on friction, stiffness and strength to weight ratio, wheel alignment, etc. Class discussion of experimental results 	 Investigating Model Car Materials lesson Solar and Car Fundamentals PowerPoint (in resource links list)
3	Applied STEM Concepts • Experiment with STEM principles relevant to motors, transmissions and gear ratios	 Class experiments on torque and force, the effect of wheel diameter on transmission ratios, gear ratios, etc. Class discussion of experimental results 	 Transmission Investigation #1 lesson Transmission Investigation #2 lesson Friction Investigation lesson
4	Applied STEM Concepts • Experiment with STEM principles relevant to electric motors, electricity, photovoltaics, aerodynamics and car body shape	 Class experiments on solar panel output, motor output, effects of voltage/current input on motor output, air drag on difference body shapes Class discussion of experimental results Generate design criteria for vehicles Groups develop car designs 	 Understanding Solar Energy lesson Sun's Angle Investigation lesson Aerodynamic Shape Investigation #1 lesson Aerodynamic Shape Investigation #2 lesson
5	Design Review &	 Groups present their designs and explain 	Design Review lesson

	Car Construction	 choices Conduct experiments to answer design questions Discuss building materials and methods 	
(6 Car Construction	 Groups begin constructing their cars Groups construct and test components of their cars 	
		• Rework components as needed, combining best features from various concepts	
	7 Optimize Cars	 Groups present their final designs and explain choices Complete construction Conduct optimization experiments Tweak components to optimize performance 	• Design Review lesson
8	8 Race Cars & Debrief	 Discuss performance measures Conduct final races Discuss process and reflect on lessons 	Setting Up a Solar Car I Guide PowerPoint (in res

learned

g Up a Solar Car Race Teacher's PowerPoint (in resource links list)